
Simulations of electrophoretic collisions of DNA knots with gel obstacles

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2006 J. Phys.: Condens. Matter 18 S161

(http://iopscience.iop.org/0953-8984/18/14/S02)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 28/05/2010 at 09:20

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/18/14
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 18 (2006) S161–S171 doi:10.1088/0953-8984/18/14/S02

Simulations of electrophoretic collisions of DNA knots
with gel obstacles

C Weber1, P De Los Rios2, G Dietler3 and A Stasiak4

1 Institut de Recherche Numérique Romand en Physique des Matériaux (IRRMA),
CH-1015 Lausanne, Switzerland
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Abstract
Gel electrophoresis can be used to separate nicked circular DNA molecules of
equal length but forming different knot types. At low electric fields, complex
knots drift faster than simpler knots. However, at high electric field the
opposite is the case and simpler knots migrate faster than more complex knots.
Using Monte Carlo simulations we investigate the reasons of this reversal of
relative order of electrophoretic mobility of DNA molecules forming different
knot types. We observe that at high electric fields the simulated knotted
molecules tend to hang over the gel fibres and require passing over a substantial
energy barrier to slip over the impeding gel fibre. At low electric field the
interactions of drifting molecules with the gel fibres are weak and there are
no significant energy barriers that oppose the detachment of knotted molecules
from transverse gel fibres.

(Some figures in this article are in colour only in the electronic version)

Introduction

The physical mechanism of gel electrophoresis of DNA molecules has been a subject of
numerical simulations and analytical approaches [1, 10–12, 20, 21, 25, 32]. Most frequently the
experimental and theoretical studies of DNA gel electrophoresis consider movements of linear
or circular DNA molecules [24, 26, 30, 34]. Especially interesting and challenging would
be, however, understanding of the underlying principles that govern separation of different
knot types. Various classes of enzymes such as topoisomerases and site-specific recombinases
produce different kinds of knots or catenanes by acting on circular DNA molecules [9, 28]. The
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determination of the knot types formed is required for the elucidation of molecular mechanisms
of action of these enzymes that are involved in the proper functioning of cellular DNA (see for
example [13, 23]). Knots can also arise as a result of DNA packing in phage heads; analysis
of these knots might reveal the arrangement of DNA in phage heads and in the tightly packed
state, in general [4].

Biochemical studies of different DNA knots formed on DNA molecules of the same
size revealed that during low voltage gel electrophoresis the knotted DNA molecules
separated in such a way that more complex knots migrated more quickly than less complex
knots [7–9, 29, 33]. This behaviour of knotted DNA molecules can be easily understood.
Simple experience with a piece of a rope demonstrates that more complex knots tied on a
circular rope with a given length compactify it more than simple knots. Therefore, DNA
molecules with more complex knots are expected to have smaller overall dimensions than
corresponding DNA molecules with simpler knots and should therefore experience a lower
hydrodynamic drag during gel electrophoresis. However, more recently it was observed that at
higher voltage the complex knots migrate more slowly than the simpler knots [27, 31]. This
physical behaviour of DNA knots at high electric field is rather counterintuitive. In this paper
we try to explain the physical reasons behind the field dependent reversal of the relative order
of migration of DNA knots during gel electrophoresis.

Methods

DNA knots are modelled by closed self-avoiding walks (SAWs) composed of N segments
of length a on a three-dimensional cubic lattice (the lattice constant a is comparable to the
persistence length of the DNA molecules). The gel is a two-dimensional grid forming a
sublattice with a mesh size b (=gel parameter) and perpendicular to the applied electric field
(so that no knots can ever get impaled). The gel lattice is shifted by the quantity ( a

2 , a
2 , a

2 )

compared to the knot lattice, so that no points of the knot lie on the gel. Knots are not allowed
to cross the gel network. The coordinates of the N monomers in the configuration at time t are
written as

r̄(t) = (�r1(t), �r2(t), . . . , �rN (t)) (1)

with constraints ‖�r j (t) − �r j+1(t)‖ = a.
The dynamics is followed using the BFACF algorithm [3, 6, 17]. Two kinds of moves are

allowed: (a) the creation/destruction of a handle and (b) the flip of a corner into the mirror
position (see figure 1). The first move clearly does not preserve the knot length, which can
vary by ±2 at every step, but introduces knot elasticity. The BFACF algorithm preserves knot
classes, within which it is ergodic [15]. Self-avoidance is imposed by disallowing monomers
from visiting any site which is already occupied by other monomers. Furthermore, knots are
not allowed to cross gel rods, so that corner flips and handle creation/destruction are forbidden
when a rod has to be crossed.

Under an external uniform electric field �E , the electrostatic energy at time t is given by

Eq(t) = − q

N(t)

N∑

j=1

�r j (t) · �E . (2)

N(t) is the length of the knot at time t , and it is associated with an elastic energy

Eel(t) = 1
2 K [N(t) − N0]2 (3)

where K is the spring constant. In the simulation a value K/kBT = 0.1 was used. The knot
energy is then E(t) = Eq(t) + Eel(t). The rest length N0 was set to 150. Moreover, in the rest
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(a)

(b)

Figure 1. Monte Carlo moves in the BFACF: (a) creation/destruction of a handle and (b) flip of a
handle. On the left side, the movement is not crossing a gel rod and is allowed; on the right side the
movement is forbidden.

of the paper we will consider different values of the dimensionless constant C = q · a · E/kBT .
At each timestep, we choose a point at random on the chain and propose alternatively one of
the two moves. If it satisfies the self-avoiding and gel-avoiding constraints, it is accepted with
a probability given by the Metropolis algorithm: if the energy of the new trial configuration,
Etrial, is lower than that of the previous configuration, Eold = E(t), the move is accepted and
r̄(t + 1) = r̄trial; otherwise, the probability of acceptance of the trial configuration is equal to
exp{−[Etrial − E(t)]}/kBT . If the move is rejected, then r̄(t + 1) = r̄(t).

The knots were drawn manually on the cubic lattice (without distinction of chirality, we
mixed left-and right-handed configurations). Alexander polynomial [2] calculation was used
to verify that the knot type does not change during the simulation. Starting from the trial knot
configuration, we let the system freely relax to thermodynamic equilibrium in the absence of an
external field (E = 0) until correlations from the initial configuration have disappeared. Then
the electric field is switched on, and we let the knots migrate on the lattice. The quantity we
compute is the position of the centre of mass along a trajectory.

Time is measured in Monte Carlo iterations, length in lattice spacing. The initial length
N0 of our polymers was set to 150, and the mean length of the knot depends generally on the
electric field and on the gel parameter. However, the average length is slightly shorter that
N0, since the probability of shortening the polymer is a slightly larger than the probability of
lengthening it due to the self-avoiding condition. The gel parameter was set to b = 20 (in units
of a), corresponding to a relatively sparse gel with big pores.

Results and discussion

Gel electrophoresis is a complex physical process and therefore our simple modelling system
may not capture fine details of the ongoing process. However, when we looked at the behaviour
of modelled knotted DNA molecules undergoing electrophoresis in the low and high electric
field we noticed some fundamental differences that are likely to reflect real physical principles.
At low electric fields the knotted molecules were only briefly retarded upon hitting the gel fibre
and could easily detach without a need to pass over an energy barrier higher than 1–2 kBT
(see figure 2). Small plateaus observed in the energy profiles show that during these plateaus
the molecules are stopped in their electrophoretic migration and therefore do not decrease their
potential electrostatic energy. At high electric fields, however, the knotted molecules were
retarded for a much longer time and their detachment required passing over a significant energy
barrier of the order of 8–10 kBT (see figure 3). Obviously, passing over such an energy barrier
is a rare event as thermal fluctuations can hardly provide enough energy for it. Could the long
retardation times of knotted DNA molecules at high electric fields be the physical reason for
which more complex knots migrate more slowly than simpler knots under these conditions? To
answer this question we turned our attention to the behaviour of modelled unknotted rings.
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Figure 2. Electrophoretic mobility of simulated knotted molecules is monitored by measuring
the potential electrostatic energy associated with the molecules as a function of the number of
Monte Carlo steps. The observed plateaus indicate pauses in the migration caused by interactions
with impeding gel fibres. (a) and (b) are two independent monitoring plots for a simulated 31 knot
at low electric field (C = 0.1), while (c) and (d) are two corresponding plots for the 81 knot.

Interestingly, unknotted rings at high electric fields did not show long plateaus and were
detaching without a need to pass over a significant energy barrier (see figure 4). Therefore, it
is to be expected that unknotted DNA molecules should show higher electrophoretic mobility
than knotted molecules starting from some critical field strength. However, below this critical
strength knots should migrate more quickly as they are more compact and therefore show
smaller hydrodynamic friction and are also less likely to encounter gel fibres [35]. When a
gel fibre is encountered by migrating molecules the detachment of knots and unknots is very
similar in the low field regime (compare figures 2 with 4). Can we explain why at high field
regime unknots detach easily from the impeding fibres while this is not the case for knots.
Simple macroscopic experience with unknotted and knotted circular ropes hanging over a rod
shows that unknotted rope can easily slip over the rod without any need to momentarily increase
the gravitational potential energy of the rope (see figure 5). However, this is not the case for
a knotted rope. When a sliding rope approaches the region of a knot it is not possible for it to
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Figure 3. Potential electrophoretic energy registered during individual plateaus (pauses in the
electrophoretic migration caused by interactions with impeding gel fibres) observed in simulations
mimicking the effect of high electric field (C = 0.6). (a) and (b) are two typical events observed for
knot 31. (c) and (d) are plateaus observed for knot 81; notice that the horizontal scale in panel (d)
encompasses 40 000 steps instead of 10 000 steps as in panel (c).

pass over nonreducible crossings without lifting the portion of the rope by at least its diameter
above the sliding surface of the rod (see figure 5).

This of course leads to a momentary increase of the gravitational potential energy of
the rope. To check whether the macroscopic experience corresponds to what happens during
the simulations we have visualized the modelled knotted molecules at times corresponding to
passing over the energy barrier (see figure 6). In fact, in all cases analysed by us the significant
increase of the potential electrostatic energy of modelled knotted molecules corresponded to
these stages of the simulations where a knotted portion was sliding over an impeding gel fibre.
In energetic profiles of modelled knotted molecules undergoing electrophoresis observed by
us we noticed that the energy barriers encountered by simple knots (31) are similar to these
encountered by more complex knots (81). This can be explained by the fact that crossings
in a knot can pass over a fibre one after the other and therefore a passage of a nonreducible
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Figure 4. Potential electrophoretic energy registered during simulations of unknotted molecules
moving in a gel at low ((a) and (b)) and high ((c) and (d)) electric field.

individual crossing in a complex knot and that in a simple knot could require the same activation
energy.

Although in simulated high field gel electrophoresis similar energy barriers are required
for the detachment of simple and complex knots from gel fibres at, the more complex knots
on average stay attached to the gel fibre for a higher number of steps than simple knots (see
figure 3). Also in real gel electrophoresis experiments performed at high field the complex
knots migrate more slowly than simple knots [23, 31]. What could be the reason for this long
trapping time of complex knots at gel fibres? To slip over the fibre an imbalance between
hanging portions on two sides of the impeding fibre needs to be built up. As long as there is
a balance (or a small imbalance) the resulting pulling force that drives sliding of the molecule
over the impeding fibre in a real gel is zero or almost zero (see figure 5(a)). In simulations this
corresponds to small net movements where the hanging loops grow and shrink back and forth
in a nonproductive way. Only in unbalanced situations the productive pulling force develops
in real gels and molecules start progressive motion around the impeding fibre (see figure 5(c)).
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Figure 5. Sliding over the impeding rod of the unknotted ((a), (b), (c)) and knotted macroscopic
loops ((d), (e), (f)). Notice that an unknotted loop can slide over a rod without crossing an energy
barrier while this is not the case for knotted loops. Sliding of a knotted loop over the rod requires
an activation energy that can pay for the lifting of the portions of the loop by at least one diameter d
above the impeding rod as this momentarily increases the potential energy of the loop. Notice also
that in the case of balanced hanging (panel (a)) there is no effective transverse pulling force that
could cause sliding.

In the case of simulations this corresponds to modelled molecules that move by growing their
longer hanging loops (handles are created there) and shrinking their shorter hanging loops
(handles are removed there). It seems to us that simple knots are more likely to create sufficient
imbalance to pull the knotted portion over the impeding fibre. It is known that simple knots can
be easily confined to a small portion of the chain [14, 16, 18]. Therefore, there would be a good
chance of arriving at the point where one would observe a long loop hanging on one side of the
fibre, the knotted short portion of the chain being present on the other side of the fibre. Only
at this point would activation energy be needed to move the knotted portion over the fibre. In
more complex knots confining a knot is entropically not favourable and therefore nonreducible
crossings of the knot are redistributed over the molecule. Therefore, when a complex knot
hits the impeding fibre it is likely that some of its nonreducible crossings are on one side of
the fibre and some on the other. As nonreducible crossings ‘consume the length’ of hanging
loops it is more difficult to produce an unbalanced situation that would eventually help to pull
knotted portions over the impeding fibres. This is also what we observe during Monte Carlo
simulations. Figures 6(a)–(c) show snapshots of a trefoil knot interacting with impeding fibre.
The interaction quickly develops into a situation where a long unknotted loop pulls the knotted
portion over the fibre. In the case of an 81 knot we frequently observe that a balanced situation
persists for a long time with knotted portions of similar length hanging on either side of the
fibre (figures 6(d), (e)).

We have also investigated the distribution of the lengths of the plateaus observed in the
migration of the knots at low fields and high fields. Interestingly, we find that the distribution
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Figure 6. Snapshots of simulated configurations of knots 31 and 81 during their sequential stages
of interaction with a gel fibre. Simulations correspond to the high electric field (C = 0.6).

of the length of the plateaus is a power law:

P(τ ) = a × τ−1−b, (4)

where τ is the length of the plateau and P(τ ) the probability of occurrence of such an event.
At high electric field, where the knots spend most of the time trapped around gel rods, we can
neglect the dynamics between two collisions and assume that the knots jump from one collision
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Figure 7. Distribution of the length of the plateau observed in the migration distance at low
(C = 0.1, filled triangles) and high electric field (C = 0.8, filled squares) for the knot 81. The
length of the plateau is denoted as τ and the distribution probability is P(τ ). Lines are fits to the
data: P(τ ) = a × τ−1−b . For C = 0.1, we find b = 2.2 and for C = 0.8 we find b = 0.33.

directly to the next one. Therefore, the dynamics can be modelled in a first approximation as
moving in a series of energy wells, separated by energy barriers. This model is called the
‘Arrhenius model’, and in our case we can understand the plateau in the migration distance as
a trapping time, during which the knot is trapped temporarily around a gel rod. In this model,
the distribution of trapping time P(τ ) is a power law when the distribution of the depth of the
energy traps is an exponential law [5, 19, 22]: ρ(E) = 1/E0e−E/E0 , where E is the energy
depth of the trap. In this type of model, the system is jumping from trap to trap, and crossing
at each step an energy barrier that is equal to the difference in energy depth of the traps. The
system will stay for a trapping time τi in the trap of energy depth Ei , and then jump to the next
trap. Given a simple activated dynamics for leaving a trap of depth E , i.e. a trap of lifetime
τ = τ0 exp(−β E), the distribution of trapping times may be computed, and it is found that

P(τ ) = a × τ−1−T/T0 . (5)

Since the energy barriers in our model are determined by the electric field with a proportionality
constant (C = q · a · E/kBT ) we can rewrite (5) as

P(τ ) = a × τ−1−C0/C . (6)

Therefore, by tuning C we can cross over from a behaviour where an average trapping time
is well defined (C < C0/2), to a regime where trapping times are characterized by Lévy
statistics (C > C0/2), where singular trapping events (singular plateaus) dominate the statistics.
Therefore the crossover from high (large C0) to low (small C0) electric fields is a transition from
Poisson-like to Lévy-like distributed trapping times. Measuring explicitly the distribution of
trapping times (see figure 7), we find that for the knot 81 we have C0 ≈ 0.26 at high field, where
this approximation is expected to be reliable (we get nevertheless good agreement with data at
low field: C0 ≈ 0.22). We note, however, that we used the number of Monte Carlo steps instead
of the unit of time for measuring τi . However, in a first approximation, linearly renormalizing
the time would only change the probability distribution P(τ ) by a linear coefficient and
therefore would not change the b exponent. Finally, the critical field C0, associated with the
transition of the simple Arrhenius model, is interestingly of the same order as the transition
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from the low field regime to the high field regime obtained in a previous study, where a critical
field of about C0 = 0.24 was found. Therefore, this simple Arrhenius model allows us to give
a very crude approximation of the transition from the low field to the high field regime. At
low electric field (or high temperature), the trapping of the knot is not efficient, and the knot is
only scattered by the gel, but at high field (or low temperature) there is a crossover to a regime
where the traps are very efficient and the knot is trapped for a macroscopic time around a few
gel rods.

Finally, since our DNA knot is supported by a cubic lattice, it could be argued that
the excluded volume of our DNA knot, in our calculation, is too large when compared to
experiments. Therefore, we have checked that upon finer discretization of the segments
there was no difference in simulation results and the critical electric field obtained, E0 (C0 =
q · a · E0/kBT ), was kept the same.

Conclusion

Using a simple simulation approach to model gel electrophoresis of DNA knots we have
observed that at high electric field the knotted molecules require passing over a significant
energy barrier in order to detach from the impeding gel fibre while this is not the case for
unknotted DNA molecules. At low field, we observed that interactions play a minor role and
the dynamics is dominated by the free movement of the DNA knot. At high electric field, we
observed that the height of the energy barrier for detaching from the gel rod, and how quickly
the knots slip around it due to the pulling force, dominate the dynamics. These observations
contribute to an explanation of why at high electric field simple knots migrate more quickly
than more complex knots while the opposite is the case in low electric field gel separations.
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